A Variation on a Theorem of Galvin and Hajnal
نویسنده
چکیده
Let K^ be a singular cardinal of regular uncountable cofinality K. Let {n(£): £, < K} be a continuous increasing sequence with limit rj, and let K^ = ^n^)+^), £ < K, be regular cardinals. Let / be a normal ideal on K, and assume that the reduced product Y\Z.
منابع مشابه
The Study of Variation of Photon Intensity Inside Biological Phantom by Green Theorem
The Image reconstruction is an important problem in optical tomography. The process of the image processing requires the study of photon migration in biological tissue. There are several approaches to study and simulate propagation of photons in biological tissues. These approaches are categorized into stochastic and analytical groups. The Monte Carlo method as a stochastic method is widely use...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملp-Lambda-bounded variation
A characteriation of continuity of the $p$-$Lambda$-variation function is given and the Helly's selection principle for $Lambda BV^{(p)}$ functions is established. A characterization of the inclusion of Waterman-Shiba classes into classes of functions with given integral modulus of continuity is given. A useful estimate on modulus of variation of functions of class $Lambda BV^{(p)}$ is found.
متن کاملA degree sequence Hajnal-Szemerédi theorem
We say that a graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem [12] characterises the minimum degree that ensures a graph G contains a perfect Kr-packing. Balogh, Kostochka and Treglown [4] proposed a degree sequence version of the Hajnal–Szemerédi theorem which, if true, gives a strength...
متن کاملMy Joint Work with Richard Rado
I first became aware of Richard Rado's existence in 1933 when his important paper Studien zur Kombinatorik appeared. I thought a great deal about the many fascinating and deep unsolved problems stated in this paper but I never succeeded to obtain any significant results here and since I have to report here about our joint work I will mostly ignore these questions. Our joint work extends to more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006